Title: b-Alanine
CAS Registry Number: 107-95-9
Additional Names: b-Aminopropionic acid; 3-aminopropanoic acid; 3-aminopropionic acid
Trademarks: Abufène (Thžaplix)
Molecular Formula: C3H7NO2
Molecular Weight: 89.09
Percent Composition: C 40.44%, H 7.92%, N 15.72%, O 35.92%
Line Formula: NH2CH2CH2CO2H
Literature References: Prepd by the action of KOBr and KOH upon succinimide: Clarke, Behr, Org. Synth. 16, 1 (1936). By the action of liq ammonia upon methyl acrylate: Morsch, Monatsh. Chem. 63, 220 (1933), cf. C.A. 41, 4104 (1947); by the addition of NH4OH to acrylonitrile: Ford et al., J. Am. Chem. Soc. 69, 844 (1947). By electrolytic oxidation of 3-amino-1-propanol in H2SO4 using Pb electrodes without diaphragm: Jubilee Vol. Emil Barell 1946, 85-91. For industrial methods of prepn see several pats. by T. L. Gresham to B. F. Goodrich. Prepn from ethylene cyanohydrin (b-hydroxypropionitrile): Boatright, US 2734081 (1956 to Am. Cyanamid); from b-aminopropionitrile: Ford, Org. Synth. coll. vol. III, 34 (1955). Improved process: Beutel, Klemchuk, US 2956080 (1960 to Merck & Co.).
Properties: Orthorhombic bipyramidal crystals from water, decomp 207° (very rapid heating). Decomp 197-198° (Ford, Org. Syn. loc. cit.). Slightly sweet taste. pK1 3.60; pK2 10.19. pH of 5% aq soln: 6.0 to 7.3. Freely sol in water, slightly in alcohol. Practically insol in ether, acetone.
pKa: pK1 3.60; pK2 10.19
Derivative Type: Hydrochloride
Molecular Formula: C3H7NO2.HCl
Molecular Weight: 125.55
Percent Composition: C 28.70%, H 6.42%, N 11.16%, O 25.49%, Cl 28.24%
Properties: Plates, leaflets, mp 122.5°. Freely sol in water, less sol in alcohol, insol in ether.
Melting point: mp 122.5°
Derivative Type: Platinichloride
Molecular Formula: 2C3H7NO2.2HCl.PtCl4
Molecular Weight: 588.00
Percent Composition: C 12.26%, H 2.74%, N 4.76%, O 10.88%, Cl 36.18%, Pt 33.18%
Properties: Yellow leaflets from alcohol + HCl, decomp 210°. Freely sol in water, sparingly in abs alcohol.
Use: In the synthesis of pantothenic acid and derivatives; as buffer in electroplating.
beta-Amino-alpha-methylphenethyl Alcohol beta-Aminobutyric Acid beta-Amyrin beta-Benzalbutyramide beta-Boswellic Acid

Beta-alanine structure.svg
CAS number 107-95-9 YesY
PubChem 239
ChemSpider 234 YesY
EC-number 203-536-5
DrugBank DB03107
KEGG D07561 YesY
ChEBI CHEBI:16958 YesY
IUPHAR ligand 2365
Jmol-3D images Image 1
Molecular formula C3H7NO2
Molar mass 89.09 g mol−1
Appearance white bipyramidal crystals
Odor odorless
Density 1.437 g/cm3 (19 °C)
Melting point 207 °C; 405 °F; 480 K (decomposes)
Solubility in water 54.5 g/100 mL
Solubility soluble in methanol. diethyl ether, acetone
log P -3.05
Acidity (pKa) 3.63
MSDS [1]
Main hazards Irritant
NFPA 704
NFPA 704.svg
LD50 1000 mg/kg (rat, oral)
 YesY (verify) (what is: YesY/N?)
Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
Infobox references

β-Alanine (or beta-alanine) is a naturally occurring beta amino acid, which is an amino acid in which the amino group is at the β-position from the carboxylate group (i.e., two atoms away, see Figure 1). The IUPAC name for β-alanine is 3-aminopropanoic acid. Unlike its counterpart α-alanine, β-alanine has no stereocenter.

β-Alanine is not used in the biosynthesis of any major proteins or enzymes. It is formed in vivo by the degradation of dihydrouracil and carnosine. It is a component of the naturally occurring peptides carnosine and anserine and also of pantothenic acid (vitamin B5), which itself is a component of coenzyme A. Under normal conditions, β-alanine is metabolized into acetic acid.

β-Alanine is the rate-limiting precursor of carnosine, which is to say carnosine levels are limited by the amount of available β-alanine, not histidine.[3] Supplementation with β-alanine has been shown to increase the concentration of carnosine in muscles, decrease fatigue in athletes and increase total muscular work done.[4][5] Simply supplementing with carnosine is not as effective as supplementing with β-alanine alone since carnosine, when taken by mouth, is simply broken down during digestion to its components, histidine and beta-alanine. This results in only about 40% of the total dose being available as beta-alanine.[3]

Figure 1: Comparison of β-alanine (right) with the more customary (chiral) amino acid, L-α-alanine (left)

Typically, studies have used supplementing strategies of multiple doses of 400 mg or 800 mg, administered at regular intervals for up to eight hours, over periods ranging from 4 to 10 weeks.[5][6] After a 10-week supplementing strategy, the reported increase in intramuscular carnosine content was an average of 80.1% (range 18 to 205%).[5]

A study conducted at Adams State College, Alamosa, Colorado, compared the effects of β-alanine to a placebo group in two sports: wrestling and American football. The subjects taking β-alanine achieved more desirable results on all tests compared to placebo. The wrestlers, both placebo and supplement lost weight; however, the supplement group increased lean mass by 1.1 lb., while the placebo group lost lean mass (-0.98 lb). Both American football groups gained weight; however, the supplement group gained an average 2.1 lb lean mass compared to 1.1 lb for placebo.[7]

L-Histidine, with a pKa of 6.1 is a relatively weak buffer over the physiological intramuscular pH range. However, when bound to other amino acids, this increases nearer to 6.8-7.0. In particular, when bound to β-alanine, the pKa value is 6.83,[8] making this a very efficient intramuscular buffer. Furthermore, because of the position of the beta amino group, β-alanine dipeptides are not incorporated proteins and thus can be stored at relatively high concentrations (millimolar). Occurring at 17-25 mmol/kg (dry muscle),[9] carnosine (β-alanyl-L-histidine) is an important intramuscular buffer, constituting 10-20% of the total buffering capacity in type I and II muscle fibres.

β-Alanine, provided in solution or as powder in gelatine capsules, however, causes paraesthesia when ingested in amounts above 10 mg per kg body weight (bwt).[6] This is variable between individuals. Symptoms may be experienced by some individuals as mild even at 10 mg per kg bwt, in a majority as significant at 20 mg per kg bwt, and severe at 40 mg per kg bwt.[6] However, an equivalent amount (equimolar) to 40 mg per kg bwt, ingested in the form of histidine containing dipeptides in chicken broth extract, did not cause paraesthesia.[6]

It is probable that the paraesthesia, a form of neuropathic pain, results from high peak blood-plasma concentrations of β-alanine, since greater quantities, ingested in the form of the β-alanine/histidine (or methylhistidine)-containing dipeptides (i.e., carnosine and anserine) in meat, do not cause the same symptoms. In this case the β-alanine absorption profile is flattened but sustained for a longer period of time,[6] whereas the β-alanine samples in the studies were administered as gelatine capsules containing powder. This resulted in the rapid rise of plasma concentrations, peaking within 30 to 45 minutes, and being eliminated after 90 to 120 minutes. The paraesthesia caused is no indication of efficacy, since the published studies undertaken so far have utilised doses of 400 mg or 800 mg at a time to avoid the paraesthesia. Furthermore, excretion of β-alanine in urine accounted for 0.60%(+/-0.09), 1.50%(+/-0.40), or 3.64%(+/-0.47) of the administered doses of 10, 20, or 40 mg per kg body weight,[6] indicating greater losses occurring with increasing dosage.

Even though much weaker than glycine (and, thus, with a debated role as a physiological transmitter), β-alanine is an agonist next in activity to the cognate ligand glycine itself, for strychnine-sensitive inhibitory glycine receptors (GlyRs) (the agonist order: glycine >> β-alanine > taurine >> alanine, L-serine > proline).[10]

A high-potency artificial sweetener, called suosan, is derived from beta-alanine.[11]